Rensselaer Catalog 2008-2009 [Archived Catalog]
School of Architecture
|
|
Return to: Schools & Departments
Acting Dean: Mark Mistur
Associate Dean: Ted Krueger
Chair, Graduate Programs: Ted Krueger
Chair, Professional Programs: David Bell
School of Architecture home page: http://www.arch.rpi.edu
Significant changes are occurring within the discipline and profession of architecture in the areas of globalization, interdisciplinary teamwork, and emerging technologies. Along with a strong creative focus, these issues are at the core of Rensselaer’s undergraduate and graduate architecture programs. The school offers international study programs in locations such as Italy, India, and China; a studio culture that encourages study and research between disciplines; and supports the most ambitious applications of information-based design and technology while encouraging critical innovation, and an emerging program is based at Skidmore, Owens and Merrill in New York City that will allow both undergraduates and graduates to work with advances in sustainable technologies. A strong permanent faculty of 28 professors and a complement of clinical and adjunct professors drawn from research and practices across the region center their instruction on design, which is the core of the undergraduate experience.
These same qualities characterize Rensselaer’s graduate programs in Architectural Acoustics, Built Ecologies, and Lighting, as well as the professional master’s degree that is designed for those with undergraduate degrees in other fields. Each of these focuses on aspects of technology appropriate to Rensselaer and incorporates program elements of Rensselaer’s nationaly renowned Lighting Research Center. The Doctor of Philosophy in Architectural Sciences degree supports research and scholarship across all areas of graduate study.
To both its undergraduate and graduate students, Rensselaer’s School of Architecture offers an outstanding collection of resources and state-of-the-art facilities. Rensselaer’s Architecture Library, the only branch library on the campus, is located at the center of the school and is a major student, faculty, and professional resource. This library contains over 30,000 books and periodicals, both domestic and foreign, as well as a loan collection of over 100,000 slides on contemporary and historical buildings, structural design, building technology, city planning, and fine arts. It also holds a collection of maps and architectural drawings. The collection is growing to include more digital resources such as on-line image databases and access to full text research tools as well as acquiring architecture-related material in various media formats such as videotapes, DVDs, and CD-ROMs. (More information can be found at the library’s website: http://library.rpi.edu/architecture.
Specialized facilities and equipment that enhance school activities include a Fabrication Center located in the heart of the design studios. This center is committed to acquiring and providing the latest technologies available for fabrication and prototyping of design work at all levels, and includes the most sophisticated 3-D printers, CNC equipment and laser cutters available. Other lab facilities include a testing room with a Hemi-anechoic chamber, the Binaural Listening and Auralization test station, computer labs, coupled laboratory spaces with two 24-channel loudspeaker systems, video projection, and INET 2 connection for multimodal (audio/visual/haptic) telepresence research, scale-model reverberation and anechoic chambers, specialized acoustic laboratory equipment, advanced acoustics vibration measurement systems, laser doppler vibrometers and acoustic modeling and computation software, the Lee Harris Pomeroy ’54 Advanced Visualization Lab; the Laboratory of Human-Environment Interaction Research; the Electronic Studio 305; the Solar and Microclimate Laboratory, the School of Architecture Workshop, Field Study Facilities, and various other laboratories. The Lighting Research Center (LRC) housed in a 30,000 square foot facility in the historic Gurley Building, has state-of-art equipment and the ability to perform research in diverse areas of lighting. LRC facilities include a fully equipped photometry laboratory, a daylighting laboratory, climate controlled lamp and electrical testing laboratories, and human factors research space. The LRC also has the necessary measurement equipment, computer aided optical design capabilities, and workshop able to produce and evaluate fully functional prototypes and models. These facilities and existing equipment represent one of the best-equipped university-based lighting laboratories in the United States.These are generally available to all students, although in some cases training may be required and some equipment is reserved for advanced students.
This combination of excellent programs and modern facilities endows all School of Architecture graduates with a distinctive creativity, pragmatism, independence, and a progressive outlook that makes them highly sought for not only architectural practice, but also for positions in their specific areas of specialization.
Degrees Offered
Architecture |
B.Arch., M.Arch. I |
Architectural Sciences |
M.S., Ph.D. |
|
Concentration in Architectural Acoustics |
|
|
Concentration in Built Ecologies |
|
|
Concentration in Lighting
|
|
Lighting |
M.S |
Overview of Undergraduate Programs
The School of Architecture offers a five-year Bachelor of Architecture degree. The Bachelor of Architecture is a professional degree accredited by the National Architecture Accrediting Board. Approximately 60 students are admitted directly into the program each year.
As a professional school designed for those ready to begin serious architectural study in the first year, the School of Architecture’s admissions decisions are based on three criteria: overall academic excellence, creativity demonstrated through work in the arts and other areas, and maturity and personal motivation. The School encourages visiting the campus and the Greene Building, home of the School of Architecture, along with a faculty interview. All undergraduate program applicants must also provide a portfolio. For portfolio requirements visit www.arch.rpi.edu/about_directions.htm.
Students who have completed some architecture course work at other schools may apply for transfer to Rensselaer. Upon acceptance, transfer students are placed at an appropriate level in the professional program based on a review of their transcript, course descriptions, and work portfolio.
Overview of Graduate Programs
Rensselaer’s School of Architecture offers both masters and doctoral level graduate programs.
Master’s Programs
The School of Architecture offers a number of distinct master’s degrees. The Master of Architecture I is a first professional degree. It is accredited by the National Architecture Accrediting Board for students already holding at least a baccalaureate degree in another field. This degree’s course of study parallels much of the course and studio requirements for the Bachelor of Architecture program. Approximately 10 students are admitted to this program annually.
The remaining master’s programs are advanced degrees in architecture, architectural sciences, and related fields. They include:
- Master of Architecture II
- Master of Science in Architectural Sciences (Concentration in Architectural Acoustics)
- Master of Science in Architectural Sciences (Concentration in Built Ecologies)
- Master of Science in Architectural Sciences (Concentration in Lighting)
- Master of Science in Lighting
Doctoral Programs
The Ph.D. in Architectural Sciences is a multidisciplinary and interdisciplinary degree supporting research and scholarship across the many topics arising from the theory and practice of architecture and the built environment. It is open to candidates with a professional degree in architecture and those with degrees in related design fields from science, engineering, and the humanities.
Although the discipline of architecture has a strong and complex knowledge base, its essential nature causes it to synthesize the knowledge produced in many other fields, from sociology and history to information technology and the performance of materials. The degree is aimed at producing a context for the advanced study and research between architecture and appropriate areas of science, engineering, and the humanities.
Those pursuing doctoral study in Architectural Sciences at Rensselaer may select from three areas of concentration. They include:
- Ph.D. in Architectural Sciences (Concentration in Architectural Acoustics)
- Ph.D. in Architectural Sciences (Concentration in Built Ecologies)
- Ph.D. in Architectural Sciences (Concentration in Lighting)
and also in emerging areas of specialization in aspects of architecture and technology.
Research Innovations and Initiatives
Communication Acoustics The School of Architecture faculty is renowned for its acoustic consulting expertise and academic research in many areas of communication acoustics such as advanced techniques for computational modeling of room acoustics. Examples of current research include modeling and perception of coupled acoustical spaces, including sound and vision, perception of early reflections due to scattering of sound by rough surfaces and the fine structure of reverberation, room sound coloration, acoustics of under-balcony environments, and telepresence questions involving cross-modal interaction between visual and acoustical stimuli, as well as interaction between tactile and aural stimuli.
Acoustics of Concert Halls and Other Performance Venues and Classrooms
The School of Architecture faculty is also renowned for its acoustic consulting expertise in designing performance venues and worship spaces. Architecture faculty and graduate students have traveled to different halls, such as Bass Performance Hall in Fort Worth, Texas; Boston Symphony Hall, Boston, Mass.; Troy First Niagara Savings Bank Hall, Troy, N.Y.; and Saint Patrick’s Cathedral, Waterville, N.Y.; to measure different acoustical properties and acoustical energy coupling with monaural and binaural receivers. A more recent emphasis is on classrooms where poor acoustics are detrimental to learning. Research and design in this area includes computer modeling and experimentation with scale models as well as measurement and analysis in existing facilities. Ease of Hearing in Various Classroom Geometries, a recently completed thesis project, involved modeling various geometries using acoustics prediction software. Other studies concern sound propagation and scattering using physical scale models diffusitivity of reverbration, etc.
Auralization
The acoustical analog of visualization aims to recreate sound fields from computational models of spaces. Current core research includes the development of more accurate mathematical models for room acoustics, determination of accurate scattering and diffraction coefficients for performance-hall design and modeling, and subjective studies on the effect of sound quality on human performance, including productivity, ease of hearing, and hearing comfort.
Electronic Enhancement of Acoustical Communication Over Large Distances
This work focuses on the development of “acoustic telepresence systems” that will provide an unmatched auditory sense of presence across distances. This research is an essential aural counterpart to current research in computer-mediated visual technologies, with possible applications in teleconferencing, distance education, games, and virtual reality. Active room acoustics and room tuning using electroacoustics Electronic tuning can be very helpful in adapting the venue to the events taking place in it (music performances of different genres, conferences, etc.). Such dynamic tuning is very important to insure optimum acoustic quality in multipurpose spaces.
Measurement Techniques for Room Acoustics
New measurement technologies can be used for more effective representation of sound fields, leading to a better understanding of physical phenomena and aiding acousticians in the design process.
Synthetic Sensing and Synthetic Environments
Current research includes the experimental development of alternative sensory methods for individuals and the development and testing of immersive and augmented electronic environments for teleperformance and design collaboration. A guiding principle of the research is the complementary nature of media, computation, space, and the body rather than the substitution of human skills or spatial conditions with computer technology.
Computational Acoustics and Computer-mediated Design Processes
This research area is primarily concerned with Computer-Aided Design and the redefinition of the design process. The computer is envisioned as a medium for opening up new possibilities for architectural and urban design, rather than a tool for performing well-known tasks more quickly and cheaply. New design algorithms, new roles of computing in the client-designer-builder network, and new design processes are at the core of research in this area.
Product and Transmission Sound Quality
The product sound quality approach is firmly based in psychoacoustics and psychology. Using jury evaluations, the sound perception of humans is investigated with the ambition of finding new, psychoacoustically relevant sound metrics. The research includes simulation and modeling and setting targets for the design for sound quality for product applications such as automobile, household, etc., and the goal is to give sound to the work, the work in transmission sound quality focuses on the effect of transmission inaccuracies of speech systems, linear and nonlinear distortion in microphones and loudspeakers, and related applications.
Ultrasonic Sensing
This research area is primarily concerned with finding cost-effective, fast and efficient methods of sensing the sonic environment using ultrasound for use with self propelled robots and other devices needing remote sensing for interaction with the environment.
Light and Health
The Lighting Research Center continues to expand research initiatives in the area of light of health. Investigations include the role of lighting in the mitigation of diseases and disorders such as Alzheimer’s disease and Seasonal Affective Disorder (SAD) and the interaction of lighting with the human circadian and other biological systems. This research has far-reaching implications in the areas of medical research, photobiology, biotechnology, engineering, and related sciences.
Solid State Lighting
Solid state lighting is one of the fastest growing areas in lighting technology today with wide implications for all areas of lighting including architecture, transportation, and information technology. The Lighting Research Center has developed core competencies in this area and works to expand research in solid state lighting development and application.
Energy Policy
With growing need for electricity nation-wide and increasing societal pressure to avoid building new generation plants and transmission lines, there is increasing need for research in the area of “demand/response” technologies. These technologies can be used to decrease electric demand at peak times quickly without negatively impacting employee comfort or productivity. Lighting plays a key role in this area, and the Lighting Research Center research assists the development of demand/response technologies and policies.
Intelligent Roadway Systems
With the increasing complexity and congestion of roadways throughout the United States and the development of new communication and information technologies, lighting plays a key role in the transmission of information to drivers. The Lighting Research Center researches the development of lighting as part of intelligent roadway systems.
Innovation of Emergent Building Techniques
Research includes the technologies, and infrastructural systems driven by sustainable approaches to ecologies and building within them towards the development of radically new buildings systems, structures, and environments that are informed by the behavior of natural systems and/or performance characteristics of emergent technologies.
Dynamic Shading Window System (DSWS)
DSWS uses a newly developed solar-energy technology to convert the sun’s light and diverted heat into storable energy that can be used to also efficiently heat, cool, and artificially light the same office building. Photovoltaic (PV), or solar-cell, device used to collect light and heat that is then transferred into useable energy to run the motors, embedded in the building’s interior walls. The remaining energy is used for heat, air conditioning, and artificial lighting. Surplus energy can be stored. The advent of thinner, smarter materials allows application of existing technologies to systems that are more effective and visually unobtrusive. Tiny one square centimeter solar cells are one of the new technologies being incorporated in the DSWS.
Active Building Envelope (ABE)
The patented Active Building Envelope (ABE) system uses a photovoltaic (PV) system to collect and convert sunlight into electricity. That power is delivered to a series of thermoelectric (TE) heat-pumps that are integrated into a building envelope. Depending on the direction of the electric current supplied to the TE heat-pump system, the sun’s energy can be used to make the inside space warmer or cooler. ABE systems operate on the micrometer scale using thin-film photovoltaic and thin-film thermoelectric materials, potentially resulting in extremely thin (less than 500 µm) ABE-surfaces, functioning as a thermal coating system for both new and existing building surfaces. The ABE system on the micrometer scale leads to a new class of materials whose thermal conductivity would no longer be determined by thickness. Research in this areas focuses on the design and optimization of a prototype on the micrometer scale.
Design Research Model
With the intention of innovating solutions that address the complexity of pressing ecological problems facing our built environments, the built ecologies program positions the interdisciplinary role of architectural design as a catalyst for inspired collective invention. The discipline of Architecture has conventionally been an assimilator and integrator of information and technologies that span many scales and knowledge bases, from infrastructural engineering to material science, and synergistically cross-pollinating highly specialized emerging technologies.
Interdisciplinary Research Coalition
With a dedication to the discovery of new knowledge and innovative application of new techniques and technologies to infrastructure and building design, the program catalyzes the transfer of scientific knowledge and technology between disciplines and industries. The aim is to support investigations into, and dissemination of emergent sustainable approaches and technologies of building design, construction, and maintenance.
Faculty *
Professors
Goebel, J. M.A.—M.Arch. (Staaliche Hochschule fur Music and Theater); music composition and performance.
Leslie, R.—M.Arch. (Rensselaer Polytechnic Institute); lighting, daylighting, environmental comfort technologies.
Rea, M.—Ph.D. (Ohio State University); vision science; lighting theory and applications; non-visual effects of light, photometry, and transportation lighting.
Associate Professors
Bell, D.—M.Arch. (University of Virginia); architectural design, theory, and history.
Dyson, A.—M.Arch. (Yale University); architectural design, structures technology, multidisciplinary design theory and ecology.
Krueger, T.—M.Arch. (Columbia University); human-environment interaction, architecture of extreme environments, design.
Mistur, M.—M.S. (Rensselaer Polytechnic Institute); architectural design, practice, technology.
Narendran, N.—Ph.D. (University of Rhode Island); remote source lighting, fiber-optic sensors, geometric and physical optics.
Parsons, P.—B.Arch. (Cornell University); architectural design, theory, and history.
Warriner, K.—B.Arch. (University of Florida); architectural and urban design and theory.
Xiang, N.—Ph.D. (Ruhr University, Bochum, Germany); architectural acoustics, acoustic signal processing.
Assistant Professors
Braasch, J.—Ph.D. Engineering & Music (Ruhr-Bochum University, Germany); architectural acoustics, psychoacoustics.
Calamia, P.—M.A. (Princeton University); computational room acoustics, sound-field simulations.
Ellinger, J.—M.Arch. (Columbia University); design.
Figueiro, M. G.—Ph.D. (Rensselaer Polytechnic Institute); architectural design and construction management.
Garba, F.—M.Arch. (University of Pennsylvania); architectural invention/design processes, cultural/technological productivity, socio-ecological structures/hierarchies and their effects on the built environment.
Saunders, A.—M.Arch. (Harvard University); architectural design, emerging technologies and surface logic. SOM Fellow 2004.
Clinical Professors
Abbate-Gardner, C.—M.Arch. (University of Rome); architectural and urban design, practice, and Italian studies.
Crembil, G.—M. Arch. (Cranbrook Academy of Art); architectural design, tactical technology.
Ngai, T.—M. Arch. (Harvard University); architectural design, emerging technologies, emerging practice.
Oatman, M.—M.F.A. (University at Albany); drawing, design, painter and installation artist.
Riebe, D.—M.S. (Columbia University); architectural design, emerging technologies and practice, practicing licensed architect.
Emeritus Faculty
Boyce, P.—Ph.D. (University of Reading); human factors.
Haviland, D.—M.Arch. (Rensselaer Polytechnic Institute); building industry, management, economics.
Kroner, W.—M.Arch. (Rensselaer Polytechnic Institute); resources and sustainable architecture, advanced building technologies, futurism, and architectural design.
Pertuiset, N.—Hons. Dipl. Arch. and Theory (Architectural Association); architectural design and theory.
Quinn, P.—M.Arch. (University of Pennsylvania); theory and architectural design, institutional and community facilities.
Adjunct and Visiting Faculty
Abibsoltani, A.—Architectural design practice, art and architecture critic/essayist.
Bedford, S.—Ph.D. (Columbia University); architectural history, regulatory compliance.
Bergman, W.–M.F.A., Sculpture (NYS College of Ceramics at Alfred University); Kinetic Sculpture, Steel sculpture, Installation.
Bierman, A.—M.S. (Rensselaer Polytechnic Institute); mesopic vision, color vision, lighting controls, measurement of lighting efficiency.
Brons, J.—M.S. (Rensselaer Polytechnic Institute); lighting design, sustainable/green lighting practice, lighting evaluation.
Bucher, D.—B.Arch. (Rensselaer Polytechnic Institute); partner, historic preservation, building conservation.
Burgermaster, M.-M.S. (Columbia University); architectural design, technology, and practice.
Bullough, J.—Ph.D. (Rensselaer Polytechnic Institute); psychological and biological effects of light, lighting for transportation, technology transfer.
Byszewski, V.—D.Sc., Ph.D., M.S.(Warsaw University); lighting technology.
Campbell, R.—B.S. in Arch. (Arizona State University); architectural design, virtual/digital process, materials and construction, practice.
Carpentier, Jr., D.—B.A. Historic Preservation (Empire State College); historic preservation.
Carver, E.—M.Arch. (Princeton University); design, visual culture, social change.
Comodromos, D.—M.S. (Columbia University); architectural design; practice and politics; materials and construction.
Coudert, M.-B.S. Urban Planning (Arizona State University); sustainable urban design.
Ebbing, C.—M.S.E.E. (State University of New York at Buffalo); industrial acoustics, research special noise control.
Foulks, W.—M.A. (Columbia University); restoration and preservation of historic buildings.
Hoffman, D.—B.F.A. (Carnegie Mellon University); theater, technical theater, stage design, stage lighting, theatrical engineering.
Holehan, J.—M.S. (Syracuse University); planning, economics.
Holmes, O.—B.S. Mechanical Engineering (Syracuse University), HVAC, building systems, energy management.
Jamaleddine, Z.-M.Arch. (Harvard University); architectural design.
Kanonik, M.—P.E.-B.A.E. (Pennsylvania State University); structural design.
Keseru, A.—Doctor of Foreign Languages and Literature (University CA’FOSCARI, Venice, Italy); Italian language and culture.
Lam, V.-M.Arch. (Harvard University); architectural design.
Levin, R.—Ph.D. (Stanford University); lighting optics, lighting application, nonionizing radiation.
Morante, P.—B.S. Electrical Engineering (Norwich University); marketing and electric power markets.
Moujaes, N.-M.Arch. (SCI-Arc); architectural design.
Nishimura, J.—M.Arch. (Columbia University); architectural design.
Reilly, S.—B.Arch. (Rensselaer Polytechnic Institute), architectural design, practice, preservation technology.
Rizzo, P.—M.S. (Rensselaer Polytechnic Institute); lighting design, with focus on energy-efficiency, sustainability and universal design.
Scarbourgh, P.—Acoustics, electro-acoustics.
Steele, C.T.—Ph.D. (North Carolina State University); circadian phsiology, neuroendocrinology, sleep/wake cycles, operational fatiague in the military.
Szoska, M.-M.Arch. (Cranbrook Academy of Art); art and architecture related practice.
Torres, R.—Ph.D. (Chalmers Tekniska Hoegkola, Gothenburg, Sweden); architectural acoustics; auralization of sound fields, subjective effects of room acoustics.
Wadhwa, A.—M.S. Lighting (Rensselaer Polytechnic Institute); architectural lighting design, systems integration and new technologies, sustainable systems, green practices, luminaire design.
Visiting Bedford Professor
Danziger, B.—B.S. Arch.Eng. (California Polytechnic University San Luis Obispo); licensed California Structural engineer, engineering design for architecture.
Research Assistant Professor
Freyssinier–Nova, J.P.—M.S. (Rensselaer Polytechnic Institute); solid-state lighting, lighting design and applications, energy efficiency, technology transfer.
* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2008 Board of Trustees meeting.
Return to: Schools & Departments
|