Rensselaer Catalog 2017-2018 [Archived Catalog]
Materials Science and Engineering
|
|
Return to: Departments
Department Head: Pawel Keblinski
Undergraduate Advising: Daniel Gall
Graduate Recruiting: Liping Huang
Graduate Advising: Minoru Tomozawa
Department Home Page: http://mse.rpi.edu/
Progress in modern technology is often limited by the availability of suitable solid materials. The materials engineer must produce materials to meet the demands of the designers of jet engines and rocket boosters, microelectronic devices, optical components, medical prostheses, and many other products.
The principles that govern the processing and structure of materials to produce optimum mechanical and physical properties and performance are embodied in the materials engineering curriculum. The program is designed to produce engineers and scientists whose degrees represent useful specialization coupled with a broad background in all classes of materials.
Undergraduate students wishing to extend their education can undertake specialized study in a range of fields. These include ceramics, polymers, composites, nanostructured materials, high-temperature alloys, solidification, corrosion, deformation processing, welding, high-strength high-modulus materials, biomaterials, electronic materials, surface and molecular kinetics, glass science, and the origin of mechanical and physical properties in many different types of materials. Graduate students, in addition to pursuing classroom courses, conduct research in a variety of areas described below and write their theses based on this research. Extensive laboratories containing modern and sophisticated equipment are available.
For the student who likes to innovate and who wants to apply knowledge to the real problems of a modern technological society, materials science and engineering provides a broad range of exciting opportunities.
Research and Innovation Initiatives
Materials Processing
Current focus of materials processing research efforts all revolve around processing of nanostructures such as polymer nanocomposites for applications in biomedical, solar, LED lighting, electromagnetic shielding, and various other fields of major interest to U.S. economy. Research efforts were directed at dispersion and distribution of inorganic or metallic nanofillers in polymeric materials. These efforts led to major breakthroughs in understanding the physics behind nanofillers agglomeration and how to prevent agglomeration in order to achieve theoretically predicted benefits of nanostructures. Synthesis, processing and structure-property characterization of carbon nanotubes, graphene, various metallic and inorganic nanoparticles, and their polymeric nanocomposites continue to form the core research activities at the department.
Materials for Microelectronic Systems
This research spans multiple fields including the development of epitaxial semiconductor materials for new electronic applications, exploration of new semiconductor nanostructural architectures for new nanoelectronic device concepts, development of new methods for material characterization and fabrication at the nanoscale, and materials problems associated with the interconnections between integrated circuit elements. Included are the growth of thin films of metals, semiconductors, polymer and ceramic materials, advances in the patterning and etching processes necessary for the fabrication of multilayer devices, and the application of state-of-the-art ion and electron beam lithography and microscopy methods.
Glasses and Ceramics
Research efforts focus on factors influencing the useful lifetime of glass components and the effect of environments, especially aqueous environments, on glass failure. In addition to the conventional applications such as windows and bottles, glasses are used as optical components such as optical communication fibers. Specifically, variation of the glass surface structure with time and its influence on glass properties are under investigation. Another emphasis is the development of nonoxide glasses, primarily those based on fluorides, as the transmitting medium in optical fibers for communications purposes.
Nanocomposite Materials
Composite materials are made up of at least two distinct materials that when combined yield superior properties compared to the starting materials. Traditional examples of composite materials are carbon fiber reinforced polymers, glass fiber reinforced polymers, metal matrix composites, engineered woods, etc. Nanocomposite materials are those in which one of the components has nanoscale dimensions. For example, carbon nanotubes, organoclay sheets (organically modified clay), silica nanoparticles, graphene (individual graphite layers), etc. When nanoscale materials are combined with, for example, polymers, the resulting material provides improvements and control over multiple properties such as electrical, optical, thermal, thermo-mechanical, mechanical, environmental, etc. Research at Rensselaer spans all types of nanoscale materials and their nanocomposites mainly with polymeric materials. Examples include silica, alumina, titania, zinc oxide, organoclay, graphene, single and multi walled carbon nanotube filled polymers.
Computational Materials Science
A number of MSE faculty focus on computational materials science and have expertise ranging from electronic structure calculation via classical molecular dynamics methods and mesoscale-level techniques, to continuum-level analysis and calculations. The main goal of the computational and theoretical research is to provide a framework for understanding the detailed role of individual parameters such as microstructural size, surface structure and chemistry, nature of defects and their distribution in material synthesis, processing and properties. Specific research areas include mass and heat transport, phase diagram and phase change modeling, chemical and thermal processes in energy materials, ceramic and metallic glasses, and opto-electronic property calculations in particular for energy conversion applications.
Nanomaterials
Nanostructured materials are being widely studied by faculty, postdoctoral, and student researchers in the Materials Science and Engineering Department at Rensselaer. For example, polymer nanocomposites containing inorganic nanoparticles or carbon nanotubes are being made that have potential applications that combine novel electrical, optical, or mechanical responses. Rensselaer’s Materials Science and Engineering investigators have put significant research effort into exploring the design of polymer nanocomposites with controlled dispersions of nanoparticle fillers and how these alter the various material properties of the host polymer. Another active area of research is the use of compacted nanopowders as high figure of merit thermoelectric materials. MSE researchers also use elastic strain engineering at nanoscale, to design and tune the electrical and optical properties of low-dimensional perovskite and wurtzite materials.
Biomaterials
Biomaterials is the multidisciplinary field at the interface of biology and materials science. Design, processing and fabrication of synthetic materials that can interact with living organisms enables such technologies as biomedical implants, tissue engineering scaffolds, and drug and gene delivery vehicles. The MSE faculty study structure-property relationships in biological materials, including biominerals (ceramics and glasses), biopolymers, and complex biological composite materials. Elucidation of Nature’s materials design principles, from the molecular level to the nano- and micro-scale, provides new paradigms for the design and fabrication of advanced multifunctional synthetic materials.
Faculty *
Professors
Duquette, D.J.—Ph.D. (Massachusetts Institute of Technology); environmental and surface effects on the mechanical behavior of metals, corrosion, stress corrosion fatigue (John Tod Horton Distinguished Professor in Materials Engineering).
Gall, D.—Ph.D. (University of Illinois, Urbana-Champaign); thin film and nanostructure growth, electronic properties of materials, protective coatings, energy materials, electronic materials, single crystal layer deposition.
Hull, R.—Ph.D. (Oxford University); Nanoscaled materials, electronic materials, semiconductors, interfaces, crystalline defects, nanofabrication, materials characterization, electron microscopy, and focused ion beams (Henry Burlage Jr. Professor of Engineering and Director of Center for Materials, Devices, and Integrated Systems).
Keblinski, P.—Ph.D. (Pennsylvania State University); atomic-level computational modeling of interfacial processes; structure-property correlations; heat flow at nanoscale, polymer nanocomposites (Department Head).
Ramanath, G.—Ph.D. (University of Illinois); thin film electronic materials; interconnects, diffusion barriers, low-k dielectrics; characterization of interfacial reactions, kinetics, and mechanisms of microstructure and phase evolution during deposition and annealing; processing self-organized structures for microelectronics applications. (John Tod Horton Distinguished Professor in Materials Engineering).
Schadler, L.S.—Ph.D. (University of Pennsylvania); mechanical, electrical, and optical properties of polymer nanocomposites with an emphasis on designed interfaces to control macroscopic properties (Russell Sage Professor; Vice Provost and Dean of Undergraduate Education).
Siegel, R.W.—Ph.D. (University of Illinois); synthesis, processing, structure, and properties of functional nanostructured materials including metals, ceramics, and composites; biomaterials; atomic-scale defects and diffusion in materials (Robert W. Hunt Professor of Engineering).
Tomozawa, M.—Ph.D. (University of Pennsylvania); electrical properties of glasses, X-ray and light scattering, phase separation, mechanical properties of glasses.
Associate Professors
Huang, L.—Ph.D. (University of Illinois, Urbana-Champaign); computational and experimental techniques, oxide glasses and ceramics with superior properties, nanostructured materials for energy, environment and biology-related applications.
Lewis, D.J.—Ph.D. (Lehigh University); solidification and diffusion in multicomponent solids, modeling of phase transformations, understanding long term degradation in fuel cells.
Ozisik, R.—Ph.D. (University of Akron, Ohio); multiscale simulations of polymers and polymer nanocomposites, role of interface and confinement on the properties of nanocomposites, supercritical carbon dioxide assisted processing of polymers and polymer nanocomposites, polymeric foams.
Shi, Y.—Ph.D. (University of Michigan, Ann Arbor); computational material science, molecular motors, nanoporous materials, energetic materials, metallic glasses, and metal-semiconductor interfaces.
Assistant Professors
Chen, Y.—Ph.D. (Massachusetts Institute of Technology); shape memory alloys, microstructure design, metallurgy, mesoscale modeling, mechanical properties, continuum simulations.
Palermo, E.—Ph.D. (University of Michigan, Ann Arbor); biomaterials, polymer synthesis, antimicrobial polymers and nanomaterials, antibiofouling materials, biosensors, anticorrosion coatings.
Shi, J.—Ph.D. (University of Wisconsin, Madison); energy conversion, piezoelectricity, water splitting, oxides electronics, photovoltaics, nanotechnology, transition metal oxides, chemical vapor deposition, atomic layer deposition, sputtering, time-resolved photoluminescence, carrier dynamics.
Sundararaman, R.—Ph.D. (Cornell University); computational material science, electronic properties, nanomaterials, solid-liquid interfaces, electrochemistry, plasmonics, photonics, energy conversion and storage applications, computational methods and open-source software.
Ullal, C.—Ph.D. (Massachusetts Institute of Technology); optical microscopy, nanotechnology, self-assembled polymers, self-assembly mechanics of block copolymer and colloidal nanostructures.
Emeritus Faculty
Chung, C.I.—Ph.D. (Rutgers University); polymer processing, polymer melt theology, relaxation behavior in polymer solids.
Ficalora, P.J.—Ph.D. (Pennsylvania State University); kinetics and thermodynamics of heterogeneous reactions, chemisorption effects on electronic materials.
Hudson, J.B.—Ph.D. (Rensselaer Polytechnic Institute); adsorption on solid surfaces, structure and reactivity of solids, physics and chemistry of surfaces, nanocrystal growth.
Messler, R.W., Jr.—Ph.D. (Rensselaer Polytechnic Institute); materials in manufacturing, welding.
Murarka, S.P.—Ph.D. (University of Minnesota); Ph.D. (University of Agra); metallization for deep submicron silicon integrated circuits, low temperature and localized processes, thin dielectric films, diffusion and defects (Elaine S. and Jack S. Parker Chair in Engineering).
Steinbruchel, C.—Ph.D. (University of Minnesota); thin films, electronic materials, plasma processing, ion beam and ultra-high vacuum techniques.
Sternstein, S.S.—Ph.D. (Rensselaer Polytechnic Institute); high-performance composites; physical properties of polymers; rubber elasticity theory; fracture, yielding, and craze formation in glassy polymers and composites, viscoelastic properties; swelling in filled elastomers (William Weightman Walker Professor of Polymer Engineering).
Wright, R.N.—Sc.D. (Massachusetts Institute of Technology); metal forming and fabrication, mechanical behavior of metals.
Joint Faculty
Dordick, J.—Ph.D. (Massachusetts Institute of Technology); protein-material interactions, biocatalysis in drug discovery and human toxicology, bioengineering, and nanobiotechnology (Vice President for Research; Howard P. Isermann ‘42 Professor of Chemical and Biological Engineering).
Hahn, M.—Ph.D. (Massachusetts Institute of Technology); scaffold-directed mesenchymal stem cell differentiation, vascular tissue engineering, osteochondral regeneration, vocal fold tissue engineering (Associate Professor of Biomedical Engineering).
Koratkar, N.—Ph.D. (University of Maryland, College Park); smart materials and structures, rotorcraft, unsteady aerodynamics (John A. Clark and Edward T. Crossan Chair of Engineering; Professor of Mechanical, Aerospace, and Nuclear Engineering).
Meunier, V.—Ph.D. (University of Namur, Belgium); computational solid state physics, electronic transport, energy storage, and low-dimensional structures, nano science (Gail and Jeffery L. Kodosky ‘70 Constellation Professor; Department Head of Physics, Applied Physics & Astronomy).
Watson, E. B.—Ph.D. (Massachusetts Institute of Technology); experimental geochemistry and petrology (Institute Professor of Science; Professor of Earth and Environmental Sciences).
Wetzel, C.—Ph.D. (University of Munich, Germany); III-V nitride semiconductor physics, materials and devices in particular for lighting, photovoltaics, and electronics (Wellfleet Constellation Professor in Future Chips; Professor of Physics, Applied Physics, and Astronomy).
Staff
Manager of Mechanical Testing and Metallography Laboratories
Adams, C.J.
Administrative Specialist
Beatty, N.
Manager of Electron Microscopy Laboratories
Dove, R.
Budget Administrator
Edmans, A.
Administrative Coordinator
Leith, M. C.
Manager of Materials Analysis Laboratories
Planty, R.
* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2017 Board of Trustees meeting.
Undergraduate Programs
Outcomes of the Undergraduate Curriculum
Students who successfully complete this program will be able to demonstrate:
- an ability to apply knowledge of mathematics, science, and engineering.
- an ability to design and conduct experiments, as well as to analyze and interpret data.
- an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- an ability to function on multi-disciplinary teams.
- an ability to identify, formulate and solve engineering problems.
- an understanding of professional and ethical responsibility.
- an ability to communicate effectively.
- the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- a recognition of the need for and an ability to engage in lifelong learning.
- a knowledge of contemporary issues.
- an ability to use techniques, skills, and modern engineering tools necessary for engineering practice.
Objectives of the Undergraduate Curriculum
While certain objectives of an undergraduate education in engineering are common to all programs, there are subtle but important differences that require some subset of objectives specific to ensuring that all graduates have specialized technical knowledge in their chosen field.
Graduates of the materials engineering baccalaureate program who remain in their field, as graduate students or as professionals, will have within a few years of their graduation:
- used their broad knowledge of all classes of materials and their background in mathematics and science to contribute effectively to the solution of engineering problems, including problems involving design.
- demonstrated expertise in understanding the interdependence of the structure, properties, processing, and performance of materials and have utilized the interdependence in their professional activities.
- demonstrated themselves capable of dealing with emerging engineering problems and their societal consequences.
- demonstrated themselves effective in working with multi-disciplinary teams and in communicating clearly and convincingly in a variety of contexts.
- demonstrated the capacity for continued future learning and have a desire to engage in such learning.
The Materials Science Engineering degree program at Rensselaer is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.
Graduate Programs
The Department of Materials Science and Engineering offers programs leading to the M.S., M.Eng., and Ph.D. degrees.
Master’s Programs
Both the M.S. and M. Eng. degrees require completion of a minimum of 30 credit hours. The M.S. degree requires a written thesis as well as an oral presentation to the scientific community. A 3-credit capstone independent study project is required for the M. Eng. degree.
Doctoral Program
The Ph.D. degree requires completion of 72 credit hours. Students must complete at least 27 credits of course work, the remainder being credits for research work leading to a Ph.D. thesis. The program must include 18 credits from the five core graduate courses (Advanced Mechanical Properties (4 credits), Advanced Thermodynamics (4 credits), Advanced Electronic Properties (3 credits), Advanced Structure of Materials (4 credits), and Advanced Kinetics of Materials Reactions (3 credits). The first three courses are offered each fall semester, and the latter two courses each spring semester. The program must also include at least 9 additional credits from three graduate level (6000-level) courses in the School of Engineering or the School of Science. The student must pass an oral preliminary examination covering the five core subjects, an oral candidacy examination, as well as the final examination on the Ph.D. thesis.
Outcomes of the Graduate Curriculum
Students who successfully complete this Ph.D. program will be able to:
- demonstrate knowledge of fundamentals underlying the relationship between the structure, property, and performance of materials.
- formulate, analyze and investigate the research problem that clearly advances the state of knowledge in the field.
- demonstrate effective oral communication skills.
- write a research paper suitable for a peer-review publication.
Course Descriptions
Courses directly related to the Materials Engineering curricula are described in the Course Descriptions section of this catalog primarily under the department code MTLE.
Return to: Departments
|