Mar 28, 2024  
Rensselaer Catalog 2017-2018 
    
Rensselaer Catalog 2017-2018 [Archived Catalog]

Industrial and Systems Engineering


Return to {$returnto_text} Return to: Departments

Department Head:   John T. Wen

Director, Doctoral Program: Thomas C. Sharkey

Director, Master’s Program: William J. Foley

Director, Undergraduate Program: Charles J. Malmborg

Department Home Page: http://www.ise.rpi.edu/


The Department of Industrial and Systems Engineering offers degree programs at the bachelor’s, master’s, and doctoral levels including the bachelor’s and master’s degrees in Industrial and Management Engineering, and the doctoral degree in Decision Sciences and Engineering Systems. The common theme throughout the department’s academic programs is the use of mathematical, statistical, and computational/simulation models to better understand, predict, and optimize complex engineering, managerial, operational, and physical systems.

Research Innovations and Initiatives

The department’s research is focused on core disciplinary strengths in Industrial and Systems Engineering (ISE). ISE involves the application of mathematical, computational, statistical, and information science methods to model, analyze, and solve complex decision problems in engineering, business,  and social systems. ISE employs methods of mathematical programming, queuing theory, computational optimization, decision analysis, applied statistics, database systems, soft computing, and discrete event simulation for solving problems related to the design, planning, and operation of complex systems where intelligent coordination is necessary to achieve optimal performance. It is distinct from management and economics in the use of an engineering approach to design and analyze enterprise processes to optimize performance. It is distinct from computer science in its focus on the design of data and knowledge systems as the organizational nerve center where operations and enterprise systems are integrated.

The department’s faculty research aligns directly with these core strengths to exploit dynamically evolving opportunities of high relevance in such areas as Adaptive Supply Chains, Manufacturing Systems, Social and Cognitive Networks, Homeland Security, Service Systems Engineering, Energy and Environmental Systems, Health-care Systems and Robotics.

Faculty *

Professors

Embrechts, M.J.—Ph.D. (Virginia Polytechnic Institute); application of neural networks and fuzzy logic for manufacturing and process control; image recognition and classification with the aid of neural networks; neural networks, fractals, chaos, and wavelets for time-series analysis; data mining and computational intelligence.

Hsu, C.—Ph.D. (Ohio State University); electronic commerce, metadatabase and information systems, enterprise integration and modeling, Internet enterprises planning, computerized manufacturing, information visualization, economic evaluation of cyberspace-augmented enterprises.

Malmborg, C.J.—Ph.D. (Georgia Institute of Technology); modeling and analysis of problems in facility design, materials handling, material flow, storage systems, simulation-based optimization methods, manufacturing systems, decision analysis.

Wallace, W.A.—Ph.D. (Rensselaer Polytechnic Institute); decision support systems, environmental management modeling process, disaster management.

Wen, J.T.—Ph.D. (Rensselaer Polytechnic Institute); control system applications, robotics, thermal management, circadian rhythm regulation, materials microstructure control.

Associate Professors

Chan, W.K.—Ph.D. (University of California at Berkeley); discrete event simulation, design and analysis of manufacturing and service systems, mathematical statistics, queuing theory.

Mendonca, D.—Ph.D. (Rensselaer Polytechnic Institute); human factors, cognitive engineering, decision support systems, applications in emergency response and critical infrastructure management.

Sharkey, T.—Ph.D. (University of Florida); mathematical programming, network algorithms, combinatorial and computational optimization, supply chain logistics, demand allocation based supply chain optimization models, nonlinear network design problems.

Assistant Professors

Pazour, J.—Ph.D. (University of Arkansas); decision analysis, operations research, military logistics, distribution and transportation systems, health-care logistics, peer-to-peer resource sharing systems.

Pequito, S.—Ph.D. (Carnegie Mellon University and Instituto Superior Técnico); optimization and control, large scale systems, network science, cyber-physical systems, neuroscience, biomedicine.

Xie, W.—Ph.D. (Northwestern University); applied statistics, operations research and data analytics.

Senior Research Scientist

Grabowski, M.—Ph.D. (Rensselaer Polytechnic Institute); management information systems, knowledge-based systems, human and organizational error in large-scale systems, impact of information technology on systems and organizations.

Lecturers

Aboul-Seoud, M.—Ph.D. (University of Louisville); reliability engineering, quality control, operations research.

Foley, W.J.—P.E., Ph.D. (Rensselaer Polytechnic Institute); engineering design, computer simulation modeling, health applications of operations research, health case policy analysis.

Emeritus Faculty

Berg, D.—NAE, Ph.D. (Yale University); Institute Professor of Science and Technology (joint in Lally School of Management and Information Technology); management of technological organizations, innovation, policy, robotics, policy issues of research and development in the service sector.

Graves, R.J.—Ph.D. (State University of New York at Buffalo); manufacturing systems modeling and analysis, facilities planning and material handling system design, scheduling systems, concurrent engineering and design for manufacture, continuous flow manufacturing systems design, distributed manufacturing concepts, information infrastructure.

Raghavachari, M.—Ph.D. (University of California at Berkeley); statistical inference, quality control, multivariate methods, scheduling problems.

Sullo, P.—Ph.D. (Florida State University); reliability, life testing, statistical quality control, quality management, biostatistics, industrial statistics.

Tien, J.—NAE, Ph.D. (Massachusetts Institute of Technology); systems modeling, queuing theory, public policy and decision analysis, computer performance evaluation, and information and decision support systems, expert systems, computational cybernetics.

Wilkinson, J.—Ph.D. (University of North Carolina); regression modeling, statistical analysis.

Willemain, T.R.—Ph.D. (Massachusetts Institute of Technology);  probabilistic modeling, data analysis, forecasting.

* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2017 Board of Trustees meeting.

Undergraduate Programs 

Objectives of the Undergraduate Curriculum 

The Industrial and Management Engineering program is designed to prepare students for continued learning and successful careers in industry, government, academia, and consulting. Within a few years of graduation our graduates of the Bachelor of Science programs are expected to:

  • pursue professional positions in industry and/or graduate study programs in their areas of interest.
  • contribute to the body of knowledge in their professional discipline through problem-solving, discovery, leadership, and responsible application of technology.
  • continue to develop both professionally and personally through activities such as participation in professional societies, continuing education, and community service.

The Industrial and Management Engineering degree program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

Outcomes of the Undergraduate Curriculum
Students who successfully complete this program will be able to demonstrate:

  • the application of knowledge of mathematics, science, and engineering.
  • ability to design and conduct experiments, as well as to analyze and interpret data.
  • ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
  • ability to function on multi-disciplinary teams.
  • skill in identifying, formulating, and solving engineering problems.
  • understanding of professional and ethical responsibility.
  • effective communication skills.
  • the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
  • a recognition of the need for and an ability to engage in lifelong learning.
  • a knowledge of contemporary issues.
  • an ability to use techniques, skills, and modern engineering tools necessary for engineering practice.
  • an ability to design, develop, implement, and improve integrated systems that include people, materials, information, equipment, and energy.

Baccalaureate Program

The ISE department offers an undergraduate curriculum in Industrial and Management Engineering (IME). The first two years of this curriculum provide a strong foundation in basic science, engineering science, mathematics, and the humanities, arts, and social sciences. These two years are oriented toward the quantitative (mathematical) approach. Computer-based technology, including simulation, computational modeling, and systems design, is emphasized. In the last two years of the program, students concentrate on building expertise in statistics, operations research, manufacturing and services engineering, and industrial engineering methods and models. Through the appropriate choice of electives, students can focus on their selected areas of interest. Design projects include problems in manufacturing, services, and public systems. It is advisable to develop a Plan of Study leading to the desired degree and concentration by the beginning of the third year. The department recommends that students declare their intent to major in Industrial and Management Engineering as early as possible in their academic career. Students are also urged to work closely with their assigned faculty advisers to ensure that all degree requirements are satisfied.

This curriculum requires a minimum of 131 credit hours and completion of the course requirements shown in the typical four-year program presented in the Programs section of this catalog. 

Special Undergraduate Opportunities

Cooperative Education Program
The department encourages this option, which allows students to gain professional experience as part of the educational program. Additional information on co-op opportunities is included in the Educational Programs and Resources section of this catalog, as well as through the faculty adviser or the Center for Career and Professional Development.

International Study
Study abroad and other international experiences have become an integral part of a well-rounded undergraduate experience. A period abroad allows students to develop a broader perspective on their chosen academic field of study while earning credit towards a Rensselaer degree, or to gain valuable practical and intercultural experience. Students gain a deeper understanding not only of the culture in which they will be living, but also the culture of the U.S. and its place in today’s global society. 

Graduate Programs

Master’s Programs

The Industrial and Systems Engineering Department offers the Master of Science and Master of Engineering degrees in Industrial and Management Engineering. Both degrees require a minimum of 30 credit hours. The Master of Science degree requires a thesis. The Master of Engineering degree is a non-thesis option. All applicants to the IME master’s programs must take the Graduate Record Exam (GRE). 

Doctoral Programs

The Industrial and Systems Engineering Department offers the Ph.D. in Decision Sciences and Engineering Systems. All applicants to the Ph.D. program must take the Graduate Record Exam (GRE). A total of 72 credit hours are required for students entering with an approved master’s degree, while a total of 90 credits are required for those entering with an approved bachelor’s degree. Further requirements are found under the Ph.D. in Decision Sciences and Engineering program information.

Outcomes of the Graduate Curriculum
Students who successfully complete this program will be able to demonstrate:

  • competency in area of specialization.
  • ability to lead or support development of proposals for external funding.
  • ability to lead or support delivery of conference and/or journal papers to publication.
  • ability to support the delivery of the department’s educational program.
  • ability to present work in public forum.

Course Descriptions

Courses directly related to all Industrial and Systems Engineering curricula are described in the Course Description section of this catalog under the department code ISYE.

 

Return to {$returnto_text} Return to: Departments